3.1789 \(\int \frac{(a c+(b c+a d) x+b d x^2)^3}{(a+b x)^3} \, dx\)

Optimal. Leaf size=14 \[ \frac{(c+d x)^4}{4 d} \]

[Out]

(c + d*x)^4/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0099483, antiderivative size = 14, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.069, Rules used = {626, 32} \[ \frac{(c+d x)^4}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a*c + (b*c + a*d)*x + b*d*x^2)^3/(a + b*x)^3,x]

[Out]

(c + d*x)^4/(4*d)

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\left (a c+(b c+a d) x+b d x^2\right )^3}{(a+b x)^3} \, dx &=\int (c+d x)^3 \, dx\\ &=\frac{(c+d x)^4}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.0015153, size = 14, normalized size = 1. \[ \frac{(c+d x)^4}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*c + (b*c + a*d)*x + b*d*x^2)^3/(a + b*x)^3,x]

[Out]

(c + d*x)^4/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 13, normalized size = 0.9 \begin{align*}{\frac{ \left ( dx+c \right ) ^{4}}{4\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*c+(a*d+b*c)*x+b*d*x^2)^3/(b*x+a)^3,x)

[Out]

1/4*(d*x+c)^4/d

________________________________________________________________________________________

Maxima [B]  time = 1.03494, size = 42, normalized size = 3. \begin{align*} \frac{1}{4} \, d^{3} x^{4} + c d^{2} x^{3} + \frac{3}{2} \, c^{2} d x^{2} + c^{3} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^3/(b*x+a)^3,x, algorithm="maxima")

[Out]

1/4*d^3*x^4 + c*d^2*x^3 + 3/2*c^2*d*x^2 + c^3*x

________________________________________________________________________________________

Fricas [B]  time = 1.4753, size = 66, normalized size = 4.71 \begin{align*} \frac{1}{4} \, d^{3} x^{4} + c d^{2} x^{3} + \frac{3}{2} \, c^{2} d x^{2} + c^{3} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^3/(b*x+a)^3,x, algorithm="fricas")

[Out]

1/4*d^3*x^4 + c*d^2*x^3 + 3/2*c^2*d*x^2 + c^3*x

________________________________________________________________________________________

Sympy [B]  time = 0.145323, size = 32, normalized size = 2.29 \begin{align*} c^{3} x + \frac{3 c^{2} d x^{2}}{2} + c d^{2} x^{3} + \frac{d^{3} x^{4}}{4} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x**2)**3/(b*x+a)**3,x)

[Out]

c**3*x + 3*c**2*d*x**2/2 + c*d**2*x**3 + d**3*x**4/4

________________________________________________________________________________________

Giac [B]  time = 1.22382, size = 42, normalized size = 3. \begin{align*} \frac{1}{4} \, d^{3} x^{4} + c d^{2} x^{3} + \frac{3}{2} \, c^{2} d x^{2} + c^{3} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^3/(b*x+a)^3,x, algorithm="giac")

[Out]

1/4*d^3*x^4 + c*d^2*x^3 + 3/2*c^2*d*x^2 + c^3*x